Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.11.28.23299156

ABSTRACT

Due to the proliferation of new SARS-CoV-2 variants, most COVID-19 cases are now caused by post-vaccine infections and a substantial proportion are reinfections. While prior research on correlates of protection has focused on the role of anti-spike antibodies, the results of the corresponding antibody assays may not accurately predict the risk of infection with new SARS-CoV-2 variants. In this study, we investigated the association between live virus neutralising antibody activity and SARS-CoV-2 infection risk using self-administered capillary microsample blood tests from VirusWatch participants. The study was conducted during the transition between the dominance of the B.1.617.2 (Delta) and B.1.1.529 (Omicron BA.1) SARS-CoV-2 variants, enabling us to investigate the association between variant-specific virus inhibition and subsequent infections within each dominance period. Greater inhibition of Omicron BA.1 live virus was associated with a reduction in infection risk during both the Delta and Omicron BA.1 dominance periods. Delta virus inhibition was associated with infection risk reduction during the Delta dominance period, but we found no association between Delta inhibition and protection against infection during the Omicron BA.1 dominance period. Our results are consistent with earlier findings and suggest that variant-specific serosurveillance of immunity and protection against SARS-CoV-2 infection at the population level could inform public health policy in near-real time using inexpensive and accessible home-based testing.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.10.26.23297598

ABSTRACT

IntroductionEmerging evidence suggests association of air pollution exposure with risk of SARS-CoV-2 infection, but many of these findings are limited by study design, lack of individual-level covariate data or are specific to certain subpopulations. We aim to evaluate causal effects of air pollution on risk of infection, whilst overcoming these limitations. MethodsConcentrations for black carbon(BC), particulate matter 10(PM10), particulate matter 2.5(PM2.5), nitrogen dioxide(NO2) and oxides of nitrogen(NOx) from the Department of Environment, Food and Rural Affairs (DEFRA) and Effect of Low-level Air Pollution: A Study in Europe (ELAPSE) were linked to postcodes of 53,683 Virus Watch study participants. The primary outcome was first SARS-CoV-2 infection, between 1st September 2020 and 30th April 2021. Regression analysis used modified Poisson with robust estimates, clustered by household, adjusting for individual (e.g., age, sex, ethnicity) and environmental covariates(e.g., population density, region) to estimate total and direct effects. ResultsSingle pollutant analysis showed the direct effect of higher risk of SARS-CoV-2 infection with increased exposure to PM2.5(RR1.11,95%CI 1.08;1.15), PM10(RR1.06,95%CI 1.04;1.09), NO2(RR1.04,95%CI 1.04;1.05) and NOx(RR1.02,95%CI 1.02;1.02) per 1{micro}g/m3 increment with DEFRA 2015-19 data. Sensitivity analyses altering covariates, exposure window and modelled air pollution data source produced similar estimates. Higher risk of SARS-CoV-2 per 10-5m-1 increment of BC (RR1.86, 95%CI 1.62;2.14) was observed using ELAPSE data. ConclusionLong term exposure to higher concentrations of air pollutions increases the risk of SARS-CoV-2 infection, highlighting that adverse health effects of air pollution is not only limited to non-communicable diseases.


Subject(s)
COVID-19
3.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.03.01.23286627

ABSTRACT

We evaluated the effectiveness of 1-3 booster vaccinations against SARS-CoV-2 related mortality among a cohort of 13407 older residents of long-term care facilities (LTCFs) participating in the VIVALDI study in England in 2022. Cox regression was used to estimate relative hazards of SARS-CoV-2 related death following booster vaccination relative to 2 doses (after 84+ days), stratified by previous SARS-CoV-2 infection and adjusting for age, sex and LTCF capacity. Each booster provided additional short-term protection relative to primary vaccination, with consistent pattern of waning to 45-75% reduction in risk beyond 112 days.


Subject(s)
COVID-19
4.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.01.31.23285232

ABSTRACT

[bullet] Virus Watch is a national community cohort study of COVID-19 in households in England and Wales, established in June 2020. The study aims to provide evidence on which public health approaches are most effective in reducing transmission, and investigate community incidence, symptoms, and transmission of COVID-19 in relation to population movement and behaviours. [bullet] 28,527 households and 58,628 participants of age (0-98 years, mean age 48), were recruited between June 2020 - July 2022 [bullet] Data collected include demographics, details on occupation, co-morbidities, medications, and infection-prevention behaviours. Households are followed up weekly with illness surveys capturing symptoms and their severity, activities in the week prior to symptom onset and any COVID-19 test results. Monthly surveys capture household finance, employment, mental health, access to healthcare, vaccination uptake, activities and contacts. Data have been linked to Hospital Episode Statistics (HES), inpatient and critical care episodes, outpatient visits, emergency care contacts, mortality, virology testing and vaccination data held by NHS Digital. [bullet] Nested within Virus Watch are a serology & PCR cohort study (n=12,877) and a vaccine evaluation study (n=19,555). [bullet] Study data are deposited in the Office of National Statistics (ONS) Secure Research Service (SRS). Survey data are available under restricted access upon request to ONS SRS.


Subject(s)
COVID-19
5.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-2402048.v1

ABSTRACT

Respiratory viruses that were suppressed through previous lockdowns during the COVID-19 pandemic have recently started to co-circulate with SARS-CoV-2. Understanding the clinical characteristics and symptomatology of different respiratory viral infections can help address the challenges related to the identification of cases and the understanding of SARS-CoV-2 variants' evolutionary patterns. Flu Watch (2006-2011) and Virus Watch (2020-2022) are household community cohort studies monitoring the epidemiology of influenza, respiratory syncytial virus, rhinovirus, seasonal coronavirus, and SARS-CoV-2, in England and Wales. This study describes and compares the proportion of symptoms reported during illnesses infected by common respiratory viruses. The SARS-CoV-2 symptom profile increasingly resembles that of other respiratory viruses as new strains emerge. Increased cough, sore throat, runny nose, and sneezing are associated with the emergence of the Omicron strains. As SARS-CoV-2 becomes endemic, monitoring the evolution of its symptomatology associated with new variants will be critical for clinical surveillance.


Subject(s)
COVID-19 , Respiratory Syncytial Virus Infections
6.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.08.08.22278532

ABSTRACT

Background Successive SARS-CoV-2 variants have caused severe disease in long-term care facility (LTCF) residents. Primary vaccination provides strong short-term protection, but data are limited on duration of protection following booster vaccines, particularly against the Omicron variant. We investigated effectiveness of booster vaccination against infections, hospitalisations and deaths among LTCF residents and staff in England. Methods We included residents and staff of LTCFs within the VIVALDI study ( ISRCTN 14447421 ) who underwent routine, asymptomatic testing (December 12 2021-March 31 2022). Cox regression was used to estimate relative hazards of SARS-CoV-2 infection, and associated hospitalisation and death at 0-13, 14-48, 49-83 and 84 days after dose 3 of SARS-CoV-2 vaccination compared to 2 doses (after 84+ days), stratified by previous SARS-CoV-2 infection and adjusting for age, sex, LTCF capacity and local SARS-CoV-2 incidence. Results 14175 residents and 19973 staff were included. In residents without prior SARS-CoV-2 infection, infection risk was reduced 0-83 days after first booster, but no protection was apparent after 84 days. Additional protection following booster vaccination waned, but was still present at 84+ days for COVID-associated hospitalisation (aHR: 0.47, 0.24-0.89) and death (aHR: 0.37, 0.21-0.62). Most residents (64.4%) had received primary course of AstraZeneca, but this did not impact on pre- or post-booster risks. Staff showed a similar pattern of waning booster effectiveness against infection, with few hospitalisations and no deaths. Conclusions Booster vaccination provides sustained protection against severe outcomes following infection with the Omicron variant, but no protection against infection from 3 months onwards. Ongoing surveillance for SARS-CoV-2 in LTCFs is crucial. Summary The COVID-19 pandemic has severely impacted residents in long-term care facilities (LTCFs). Booster vaccination provides sustained moderate protection against severe outcomes, but no protection against infection was apparent from around 3 months onwards. Ongoing surveillance in LTCFs is crucial.


Subject(s)
COVID-19
7.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1576609.v1

ABSTRACT

Third dose COVID-19 vaccines are being deployed widely but their efficacy has not been assessed adequately in vulnerable elderly people who exhibit suboptimal responses after primary series vaccination. We studied spike-specific immune responses in 341 staff and residents in long-term care facilities (LTCF) who received an mRNA vaccine following dual primary series vaccination with BNT162b2 or ChAdOx1. Third dose vaccination strongly increased antibody responses with preferential enhancement in older people and was required to elicit neutralisation of Omicron. Cellular immune responses were also enhanced with strong cross-reactive recognition of Omicron. However, antibody titres fell 21-78% within 100 days post vaccine and 27% of participants developed a breakthrough Omicron infection. These findings reveal strong immunogenicity of a 3rd vaccine in one of the most vulnerable population groups and endorse an approach for widespread delivery across this population. Ongoing assessment will be required to determine the stability of immune protection.


Subject(s)
COVID-19
8.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.29.22272997

ABSTRACT

Background Respiratory viruses, including SARS-CoV-2, can infect the eyes or pass into the nose via the nasolacrimal duct. The importance of transmission via the eyes is unknown but might plausibly be reduced in those who wear glasses. Previous studies have mainly focussed on protective eyewear in healthcare settings. Methods Participants from the Virus Watch prospective community cohort study in England and Wales responded to a questionnaire on the use of glasses and contact lenses. This included frequency of use, purpose, and likelihood of wearing a mask with glasses. Infection was confirmed through data linkage with Second Generation Surveillance System (Pillar 1 and Pillar 2), weekly questionnaires to self-report positive polymerase chain reaction or lateral flow results, and, for a subgroup, monthly capillary blood testing for antibodies (nucleocapsid and spike). A multivariable logistic regression model, controlling for age, sex, income and occupation, was used to identify odds of infection depending on the frequency and purpose of using glasses or contact lenses. Findings 19,166 Virus Watch participants responded to the questionnaire, with 13,681 (71.3%, CI 70.7-72.0) reporting they wore glasses. A multivariable logistic regression model showed a 15% lower odds of infection for those who reported using glasses always for general use (OR 0.85, 95% 0.77-0.95, p = 0.002) compared to those who never wore glasses. The protective effect was reduced in those who said that wearing glasses interfered with mask wearing. No protective effect was seen for contact lens wearers. Interpretation People who wear glasses have a moderate reduction in risk of COVID-19 infection highlighting the importance of the eye as a route of infection. Eye protection may make a valuable contribution to the reduction of transmission in community and healthcare settings.


Subject(s)
COVID-19 , Eye Infections
9.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.03.09.22272098

ABSTRACT

Background Long-term care facilities (LTCF) have been prioritised for vaccination, but data on potential waning of vaccine effectiveness (VE) and the impact of booster doses in this vulnerable population remains scarce. Methods We included residents and staff from 331 LTCFs enrolled in VIVALDI (ISRCTN 14447421), who underwent routine PCR testing between Dec 8, 2020 - Dec 11, 2021 in a Cox proportional hazards regression, estimating VE against SARS-CoV2 infection, COVID-19-related hospitalisation, and COVID-19-related death after 1-3 vaccine doses, stratifying by previous SARS-CoV2 exposure. Results For 15,518 older residents, VE declined from 50.7% (15.5, 71.3) to 17.2% (-23.9, 44.6) against infection; from 85.4% (60.7, 94.6) to 54.3% (26.2, 71.7) against hospitalisation; and from 94.4% (76.4, 98.7) to 62.8% (32.9, 79.4) against death, when comparing 2-12 weeks and [≥]12 weeks after two doses. For 19,515 staff, VE against infection declined slightly from 50.3% (32.7, 63.3) to 42.1% 29.5, 52.4). High VE was restored following a third dose, with VE of 71.6% (53.5, 82.7) and 78.3% (70.1, 84.3) against infection and 89.9% (80.0, 94.6) and 95.8% (50.4, 99.6) against hospitalisation, for residents and staff respectively; and 97.5% (88.1, 99.5) against death for residents. Interpretation Substantial waning of VE is observed against all outcomes in residents from 12 weeks after a primary course of AstraZeneca or mRNA vaccines. Boosters restore protection, and maximise immunity across all outcomes. These findings demonstrate the importance of boosting and the need for ongoing surveillance of VE in this vulnerable cohort. Funding UK Government Department of Health and Social Care.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome , Death
10.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.07.22270451

ABSTRACT

The two most commonly-used SARS-CoV-2 vaccines in the UK, BNT162b2 (Pfizer-BioNTech) and ChAdOx1 nCoV-19 (Oxford-AstraZeneca), employ different immunogenic mechanisms. Compared to BNT162b2, two-dose immunisation with ChAdOx1 induces substantially lower peak anti-spike antibody (anti-S) levels and is associated with a higher risk of breakthrough infections. To provide preliminary indication of how a third booster BNT162b2 dose impacts anti-S levels, we performed a cross-sectional analysis using capillary blood samples from vaccinated adults (aged ≥18 years) participating in Virus Watch, a prospective community cohort study in England and Wales. Blood samples were analysed using Roche Elecsys Anti-SARS-CoV-2 S immunoassay. We analysed anti-S levels by week since the third dose for vaccines administered on or after September 1, 2021 and stratified the results by second dose vaccine type (ChAdOx1 or BNT162b2), age, sex and clinical vulnerability. Anti-S levels peaked at two weeks post-booster for BNT162b2 (22,185 U/mL; 95%CI: 21,406-22,990) and ChAdOx1 second dose recipients (19,203 U/mL; 95%CI: 18,094-20,377). These were higher than the corresponding peak antibody levels post-second dose for BNT162b2 (12,386 U/mL; 95%CI: 9,801-15,653, week 2) and ChAdOx1 (1,192 U/mL; 95%CI: 818-1735, week 3). No differences emerged by second dose vaccine type, age, sex or clinical vulnerability. Anti-S levels declined post-booster for BNT162b2 (half-life=44 days) and ChAdOx1 second dose recipients (half-life=40 days). These rates of decline were steeper than those post-second dose for BNT162b2 (half-life=54 days) and ChAdOx1 (half-life=80 days). Our findings suggest that peak anti-S levels are higher post-booster than post-second dose, but that levels are projected to be similar after six months for BNT162b2 recipients. Higher peak anti-S levels post-booster may partially explain the increased effectiveness of booster vaccination compared to two-dose vaccination against symptomatic infection with the Omicron variant. Faster waning trajectories post third-dose may have implications for the timing of future booster campaigns or four-dose vaccination regimens for the clinically vulnerable.


Subject(s)
Breakthrough Pain
11.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.04.22270479

ABSTRACT

Abstract Importance The Omicron (B.1.1.529) variant has increased SARs-CoV-2 infections in double vaccinated individuals globally, particularly in ChAdOx1 recipients. To tackle rising infections, the UK accelerated booster vaccination programmes used mRNA vaccines irrespective of an individual's primary course vaccine type with booster doses rolled out according to clinical priority. There is limited understanding of the effectiveness of different primary vaccination courses on mRNA based booster vaccines against SARs-COV-2 infections and how time-varying confounders can impact the evaluations comparing different vaccines as primary courses for mRNA boosters. Objective To evaluate the comparative effectiveness of ChAdOx1 versus BNT162b2 as primary doses against SARs-CoV-2 in booster vaccine recipients whilst accounting for time-varying confounders. Design Trial emulation was used to reduce time-varying confounding-by-indication driven by prioritising booster vaccines based upon age, vulnerability and exposure status e.g. healthcare worker. Trial emulation was conducted by meta-analysing eight cohort results whose booster vaccinations were staggered between 16/09/2021 to 05/01/2022 and followed until 23/01/2022. Time from booster vaccination until SARS-CoV-2 infection, loss of follow-up or end-of-study was modelled using Cox proportional hazards models for each cohort and adjusted for age, sex, minority ethnic status, clinically vulnerability, and deprivation. Setting Prospective observational study using the Virus Watch community cohort in England and Wales. Participants People over the age of 18 years who had their booster vaccination between 16/09/2021 to 05/01/2022 without prior natural immunity. Exposures ChAdOx1 versus BNT162b2 as a primary dose, and an mRNA booster vaccine. Results Across eight cohorts, 19,692 mRNA vaccine boosted participants were analysed with 12,036 ChAdOx1 and 7,656 BNT162b2 primary courses with a median follow-up time of 73 days (IQR:54-90). Median age, clinical vulnerability status and infection rates fluctuate through time. 7.2% (n=864) of boosted adults with ChAdOx1 primary course experienced a SARS-CoV-2 infection compared to 7.6% (n=582) of those with BNT162b2 primary course during follow-up. The pooled adjusted hazard ratio was 0.99 [95%CI:0.88-1.11], demonstrating no difference between the incidence of SARs-CoV-2 infections based upon the primary vaccine course. Conclusion and Relevance In mRNA boosted individuals, we found no difference in protection comparing those with a primary course of BNT162b2 to those with aChAdOx1 primary course. This contrasts with pre-booster findings where previous research shows greater effectiveness of BNT162b2 than ChAdOx1 in preventing infection.


Subject(s)
COVID-19 , Infections
12.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.02.01.22270269

ABSTRACT

Introduction: Seroprevalence studies can provide a measure of cumulative incidence of SARS-CoV-2 infection, but a better understanding of antibody dynamics following infection is needed to assess longevity of detectability. Infection is characterised by detection of spike (anti-S) and nucleocapsid (anti-N) antibodies, whereas vaccination only stimulates anti-S. Consequently, in the context of a highly vaccinated population, presence of anti-N can be used as a marker of previous infection but waning over time may limit its use. Methods: Adults aged 18 years and older, from households enrolled in the Virus Watch prospective community cohort study in England and Wales, provided monthly capillary blood samples which were tested for anti-S and anti-N. Participants self-reported vaccination dates and past medical history. Prior polymerase chain reaction (PCR) swabs were obtained through Second Generation Surveillance System (SGSS) linkage data. Primary outcome variables were seropositivity (antibodies at or above the manufacturer's cut-off for positivity) and total anti-N and anti-S levels after PCR confirmed infection. Outcomes were analysed by days since infection, self-reported demographic and clinical factors. Results: A total of 13,802 eligible individuals, median age 63, provided 58,770 capillary blood samples. 537 of these had a prior positive PCR confirmed SARS-CoV-2 infection 0-269 days before the antibody sample date. 432 out of the 537 (80.44%) were anti-N positive and detection remained stable through-out follow-up. Median anti-N levels peaked between days 90 and 119 post PCR results and then began to decline. Logistic regression models, both univariable and multivariable, only showed higher odds of positive anti-N result between 0-269 days for 35-49 year olds, compared to 18-34 year olds. There is evidence of anti-N waning from 120 days onwards, with earlier waning for females and younger age categories. Discussion: Approximately 4 in 5 participants with prior PCR-confirmed infection were anti-N positive, and this remained stable through follow-up for at least 269 days. However, median antibody levels began to decline from about 120 days post-infection. This suggests that anti-N have around 80% sensitivity for identifying previous COVID-19 infection and that this sensitivity is maintained through 269 days of follow up.


Subject(s)
COVID-19
13.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.30.22270112

ABSTRACT

Background It is poorly understood which workers lack access to sick pay in England and Wales. This evidence gap has been of particular interest in the context of the Covid-19 epidemic given the relationship between presenteeism and infectious disease transmission. Method This cross-sectional analysis is nested within a large community cohort study of Covid-19 epidemiology in England and Wales (Virus Watch). An online survey in February 2021 asked participants if they had access to paid sick leave. We use a fixed effect logistic regression model to examine sociodemographic factors associated with lacking access to sick pay. Results 8,874 participants in work responded to the survey item about access to sick pay. Of those, 5,864 (66%) report having access to sick pay, 2,218 (25%) report no access to sick pay and 792 (8.9%) were unsure. Workers aged 45-64 (OR 1.72) and over 65 (OR 5.26) are more likely to lack access to sick pay compared to workers aged 25-44. South Asian workers (OR 1.40) and those from Other minority ethnic backgrounds (OR 2.93) are more likely to lack access to sick pay compared to White British workers. Workers in low income households (OR 1.43-2.53) and those with working class occupations (OR 2.04-5.29) are also more likely to lack access to sick pay compared to those in high income households and managerial occupations. Discussion Unwarranted age and race inequalities in sick pay access are suggestive of labour market discrimination. Occupational differences are also cause for concern. Policymakers should consider expanding access to sick pay to mitigate transmission of Covid-19 and other endemic infectious disease epidemics in the community.


Subject(s)
COVID-19 , Communicable Diseases
14.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.01.21.22269605

ABSTRACT

Background Recently there has been a rapid, global increase in SARS-CoV-2 infections associated with the Omicron variant (B.1.1.529). Although severity of Omicron cases may be reduced, the scale of infection suggests hospital admissions and deaths may be substantial. Definitive conclusions about disease severity require evidence from populations with the greatest risk of severe outcomes, such as residents of Long-Term Care Facilities (LTCFs). Methods We used a cohort study to compare the risk of hospital admission or death in LTCF residents in England who had tested positive for SARS-CoV-2 in the period shortly before Omicron emerged (Delta dominant) and the Omicron-dominant period, adjusting for age, sex, vaccine type, and booster vaccination. Variants were confirmed by sequencing or spike-gene status in a subset. Results Risk of hospital admission was markedly lower in 398 residents infected in the pre-Omicron period (10.8% hospitalised, 95% CI: 8.13-14.29) compared to 1241 residents infected in the Omicron-period (4.01% hospitalised, 95% CI: 2.87-5.59, adjusted Hazard Ratio 0.50, 95% CI: 0.29-0.87, p=0.014); findings were similar in residents with confirmed variant. No residents with previous infection were hospitalised in either period. Mortality was lower in the Omicron versus the pre-Omicron period, (p<0.0001). Conclusions Risk of severe outcomes in LTCF residents with the SARS-CoV-2 Omicron variant was substantially lower than that seen for previous variants. This suggests the current wave of Omicron infections is unlikely to lead to a major surge in severe disease in LTCF populations with high levels of vaccine coverage and/or natural immunity. Trial Registration Number: ISRCTN 14447421


Subject(s)
COVID-19 , Death , Severe Acute Respiratory Syndrome
16.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.21.21268214

ABSTRACT

Introduction: Infections of SARS-CoV-2 in vaccinated individuals have been increasing globally. Understanding the associations between vaccine type and a post-vaccination infection could help prevent further COVID-19 waves. In this paper, we use trial emulation to understand the impact of a phased introduction of the vaccine in the UK driven by vulnerability and exposure status. We estimate the comparative effectiveness of COVID-19 vaccines (ChAdOx1 versus BNT162b2) against post-vaccination infections of SARS-CoV-2 in a community setting in England and Wales. Method: Trial emulation was conducted by pooling results from six cohorts whose recruitment was staggered between 1st January 2021 and 31st March 2021 and followed until 12th November 2021. Eligibility for each trial was based upon age (18+ at the time of vaccination), without prior signs of infection or an infection within the first 14 days of the first dose. Time from vaccination of ChAdOx1 or BNT162b2 until SARS-CoV-2 infection (positive polymerase chain reaction or lateral flow test after 14 of the vaccination) was modelled using Cox proportional hazards model for each cohort and adjusted for age at vaccination, gender, minority ethnic status, clinically vulnerable status and index of multiple deprivation quintile. For those without SARS-CoV-2 infection during the study period, follow-up was until loss-of-follow-up or end of study (12th November 2021). Pooled hazard ratios were generated using random-effects meta-analysis. Results: Across six cohorts, there were a total of 21,283 participants who were eligible and vaccinated with either ChAdOx1 (n = 13,813) or BNT162b2 (n = 7,470) with a median follow-up time of 266 days (IQR: 235 - 282). By November 12th 2021, 750 (5.4%) adults who had ChAdOx1 as their vaccine experienced a SARS-CoV-2 infection, compared to 296 (4.0%) who had BNT162b2. We found that people who received ChAdOx1 vaccinations had 10.54 per 1000 people higher cumulative incidence for SARS-CoV-2 infection compared to BNT162b2 for infections during a maximum of 315 days of follow-up. When adjusted for age at vaccination, sex, minority ethnic status, index of multiple deprivation, and clinical vulnerability status, we found a pooled adjusted hazard ratio of 1.35 [HR: 1.35, 95%CI: 1.15 - 1.58], demonstrating a 35% increase in SARS-CoV-2 infections in people who received ChAdOx1 compared to BNT162b2. Discussion: We found evidence of greater effectiveness of receiving BNT162b2 compared to ChAdOx1 vaccines against SARS-CoV-2 infection in England and Wales during a time period when Delta became the most prevalent variant of concern. Our findings demonstrate the importance of booster (third) doses to maintain protection and suggest that these should be prioritised to those who received ChAdOx1 as their primary course.


Subject(s)
COVID-19 , Sleep Deprivation , Severe Acute Respiratory Syndrome
17.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.11.05.21265968

ABSTRACT

Background SARS-CoV-2 vaccines stimulate production of antibodies targeting the spike protein (anti-S). The level of antibodies following vaccination and trajectories of waning may differ between vaccines influencing the level of protection, how soon protection is reduced and, consequently the optimum timing of booster doses. Methods We measured SARS-CoV-2 anti-S titre in the context of seronegativity for SARS-CoV-2 anti-Nucleocapsid (anti-N), in samples collected between 1st July and 24th October 2021 in a subset of adults in the Virus Watch community cohort. We compared anti-S levels after BNT162b2 (BioNTech/Pfizer) or ChAdOx1 (AstraZeneca/Oxford) vaccination using time since second dose of vaccination, age, sex and clinical vulnerability to investigate antibody waning. To investigate the use of anti-S levels as a correlate of protection against SARS-CoV-2 infection, we undertook a survival analysis (Kaplan-Meier and Cox) with individuals entering 21 days after their second dose of vaccine, or first antibody test after 1st July (whichever was latest) and exiting with the outcome of SARS-Cov-2 infection or at the end of follow up 24th October 2021. We also undertook a negative test design case-control analysis of infections occurring after the second vaccine dose (breakthrough infections) to determine whether the type of vaccine affected the risk of becoming infected. Results 24049 samples from 8858 individuals (5549 who received a second dose of ChAdOx1 and 3205 BNT162b2) who remained anti-N negative were included in the analysis of anti-S waning over time. Three weeks after the second dose of vaccine BNT162b2 mean anti-S levels were 9039 (95%CI: 7946-10905) U/ml and ChadOx1 were 1025 (95%CI: 917-1146) U/ml. For both vaccines, waning anti-S levels followed a log linear decline from three weeks after the second dose of vaccination. At 20 weeks after the second dose of vaccine, the mean anti-S levels were 1521 (95%CI: 1432-1616) U/ml for BNT162b2 and 342 (95%CI: 322-365) U/ml for ChadOx1. We identified 197 breakthrough infections and found a reduced risk of infection post second dose of vaccine for individuals with anti-S levels greater than or equal to 500 U/ml compared to those with levels under 500 U/ml (HR 0.62; 95%CIs:0.44-0.87; p=0.007). Time to reach an anti-S threshold of 500 U/ml was estimated at 96 days for ChAdOx1 and 257 days for BNT162b2. We found an increased risk of a breakthrough infection for those who received the ChAdOx1 compared to those who received BNT162b2 (OR: 1.43, 95% CIs:1.18-1.73, p<0.001). Discussion Anti-S levels are substantially higher following the second dose of BNT162b2 compared to ChAdOx1. There is a log linear waning in levels for both vaccines following the second dose. Anti-S levels are an important correlate of protection as demonstrated by those with anti-S levels < 500U/ml following vaccination being at significantly greater risk of subsequent infection. Since anti-S levels are substantially lower in ChAdOx1 than in BNT162b2 and both decline at similar rates we would expect waning immunity to occur earlier in ChAdOx1 compared to BNT162b2. Our results showing an increased risk of breakthrough infections for those who were vaccinated with ChAdOx1 compared to BNT162b2 are in line with this hypothesis. Consistent with our data, national analyses of vaccine effectiveness also suggest that waning of immunity for infection and, to a lesser extent for severe disease, is seen earlier in ChAdOx1 than in BNT162b2. Our data demonstrate the importance of booster doses to maintain protection in the elderly and clinically vulnerable and suggest that these should be prioritised to those who received ChAdOx1 as their primary course.


Subject(s)
COVID-19
18.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.09.27.21264166

ABSTRACT

BackgroundLong Term Care Facilities (LTCF) have reported high SARS-CoV-2 infection rates and related mortality, but the proportion infected amongst survivors and duration of the antibody response to natural infection is unknown. We determined the prevalence and stability of nucleocapsid antibodies - the standard assay for detection of prior infection - in staff and residents from 201 LTCFs. MethodsProspective cohort study of residents aged >65 years and staff of LTCFs in England (11 June 2020-7 May 2021). Serial blood samples were tested for IgG antibodies against SARS-CoV-2 nucleocapsid protein. Prevalence and cumulative incidence of antibody-positivity were weighted to the LTCF population. Cumulative incidence of sero-reversion was estimated from Kaplan-Meier curves. Results9488 samples were included, 8636 (91%) of which could be individually-linked to 1434 residents or 3288 staff members. The cumulative incidence of nucleocapsid seropositivity was 35% (95% CI: 30-40%) in residents and 26% (95% CI: 23-30%) in staff over 11 months. The incidence rate of loss of antibodies (sero-reversion) was 2{middle dot}1 per 1000 person-days at risk, and median time to reversion was around 8 months. InterpretationAt least one-quarter of staff and one-third of surviving residents were infected during the first two pandemic waves. Nucleocapsid-specific antibodies often become undetectable within the first year following infection which is likely to lead to marked underestimation of the true proportion of those with prior infection. Since natural infection may act to boost vaccine responses, better assays to identify natural infection should be developed. FundingUK Government Department of Health and Social Care. Research in contextO_ST_ABSEvidence before this studyC_ST_ABSA search was conducted of Ovid MEDLINE and MedRxiv on 21 July 2021 to identify studies conducted in long term care facilities (LTCF) that described seroprevalence using the terms "COVID-19" or "SARS-CoV-2" and "nursing home" or "care home" or "residential" or "long term care facility" and "antibody" or "serology" without date or language restrictions. One meta-analysis was identified, published before the introduction of vaccination, that included 2 studies with a sample size of 291 which estimated seroprevalence as 59% in LTCF residents. There were 28 seroprevalence surveys of naturally-acquired SARS-CoV-2 antibodies in LTCFs; 16 were conducted in response to outbreaks and 12 conducted in care homes without known outbreaks. 16 studies included more than 1 LTCF and all were conducted in Autumn 2020 after the first wave of infection but prior to subsequent peaks. Seroprevalence studies conducted following a LTCF outbreak were biased towards positivity as the included population was known to have been previously infected. In the 12 studies that were conducted outside of known outbreaks, seroprevalence varied significantly according to local prevalence of infection. The largest of these was a cross-sectional study conducted in 9,000 residents and 10,000 staff from 362 LTCFs in Madrid, which estimated seroprevalence in staff as 31{middle dot}5% and 55{middle dot}4% in residents. However, as this study was performed in one city, it may not be generalisable to the whole of Spain and sequential sampling was not performed. Of the 28 studies, 9 undertook longitudinal sampling for a maximum of four months although three of these reported from the same cohort of LTCFs in London. None of the studies reported on antibody waning amongst the whole resident population. Added value of this studyWe estimated the proportion of care home staff and residents with evidence of SARS-CoV-2 natural infection using data from over 3,000 staff and 1,500 residents in 201 geographically dispersed LTCFs in England. Population selection was independent of outbreak history and the sample is therefore more reflective of the population who reside and work in LTCFs. Our estimates of the proportion of residents with prior natural infection are substantially higher than estimates based on population-wide PCR testing, due to limited testing coverage at the start of the pandemic. 1361 individuals had at least one positive antibody test and participants were followed for up to 11 months, which allowed modelling of the time to loss of antibody in over 600 individuals in whom the date of primary infection could be reliably estimated. This is the longest reported serological follow up in a population of LTCF residents, a group who are known to be most at risk of severe outcomes following infection with SARS-CoV-2 and provides important evidence on the duration that nucleocapsid antibodies remained detectable over the first and second waves of the pandemic. Implications of all available researchA substantial proportion of the LTCF population will have some level of natural immunity to infection as a result of past infection. Immunological studies have highlighted greater antibody responses to vaccination in seropositive individuals, so vaccine efficacy in this population may be affected by this large pool of individuals who have survived past infection. In addition, although the presence of nucleocapsid-specific antibodies is generally considered as the standard marker for prior infection, we find that antibody waning is such that up to 50% of people will lose detectable antibody responses within eight months. Individual prior natural infection history is critical to assess the impact of factors such as vaccine response or protection against re-infection. These findings may have implications for duration of immunity following natural infection and indicate that alternative assays for prior infection should be developed.


Subject(s)
COVID-19
19.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.08.13.21261889

ABSTRACT

Long term care facilities (LTCF) provide residential and/or nursing care support for frail and elderly people and many have suffered from a high prevalence of SARS-CoV-2 infection. Although mortality rates have been high in LTCF residents there is little information regarding the features of SARS-CoV-2-specific immunity after infection in this setting or how this may influence immunity to other infections. We studied humoral and cellular immunity against SARS-CoV-2 in 152 LTCF staff and 124 residents over a prospective 4-month period shortly after the first wave of infection and related viral serostatus to heterologous immunity to other respiratory viruses and systemic inflammatory markers. LTCF residents developed high levels of antibodies against spike protein and RBD domain which were stable over 4 months of follow up. Nucleocapsid-specific responses were also elevated in elderly donors but showed waning across all populations. Antibodies showed stable and equivalent levels of functional inhibition against spike-ACE2 binding in all age groups with comparable activity against viral variants of concern. SARS-CoV-2 seropositive donors showed high levels of antibodies to other beta-coronaviruses but serostatus did not impact humoral immunity to influenza or RSV. SARS-CoV-2-specific cellular responses were equivalent across the life course but virus-specific populations showed elevated levels of activation in older donors. LTCF residents who are survivors of SARS-CoV-2 infection thus show robust and stable immunity which does not impact responses to other seasonal viruses. These findings augur well for relative protection of LTCF residents to re-infection. Furthermore, they underlie the potent influence of previous infection on the immune response to Covid-19 vaccine which may prove to be an important determinant of future vaccine strategy. One sentence summeryCare home residents show waning of nucleocapsid specific antibodies and enhanced expression of activation markers on SARS-CoV-2 specific cells


Subject(s)
COVID-19
20.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.21.21259237

ABSTRACT

Abstract Background: Some evidence suggests that individuals may change adherence to public health policies aimed at reducing contact, transmission and spread of the SARS-CoV-2 virus after they receive their first SARS-CoV-2 vaccination. In this study, we aim to estimate the rate of change in average daily travel distance from a participant's registered address before and after SARS-CoV-2 vaccination. Method: Participants were recruited into Virus Watch starting in June 2020. Weekly surveys were sent out to participants and vaccination status was collected from January 2021 onwards. Between September 2020 and February 2021, we invited 13,120 adult Virus Watch participants to contribute towards our tracker sub-cohort which uses the Global Positioning System (GPS) to collect data on movement. We used segmented linear regression to estimate the median daily travel distance before and after the first self-reported SARS-CoV-2 vaccine dose. Results: We analysed the daily travel distance of 228 vaccinated adults. Between 157 days prior to vaccination until the day before vaccination, the median daily travel distance travelled was 8.9km (IQR: 3.50km, 24.17km). Between the day of vaccination and 100 days after vaccination, the median daily travel distance travelled was 10.30km (IQR: 4.11, 27.53km). Between 157 days prior to vaccination and the vaccination date, there was a daily median decrease in mobility of 40m (95%CI: -51m, -31m, p-value <0.001) per day. After the removal of outlier data, and between the vaccination date and 99 days after vaccination, there was a median daily increase in movement of 45.0m (95%CI: 25m, 65m, p-value = <0.001). Restricting the analysis to the 3rd national lockdown (4th of January 2021 to the 5th of April 2021), we found a median daily movement increase of 9m (95%CI: -25m, 45m, p = 0.57) in the 30 days prior to vaccination and the vaccination date, and a median daily movement increase of 10m (95%CI: -60m, 94m, p-value = 0.69) in the 30 days after vaccination. Conclusions: Our study demonstrates the feasibility of collecting high volume geolocation data as part of research projects, and the utility of these for understanding public health issues. Our results are consistent with both an increase and decrease in movement after vaccination and suggest that, amongst Virus Watch participants, any changes in movement distances post-vaccination are small.

SELECTION OF CITATIONS
SEARCH DETAIL